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Abstract
Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of
currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide
paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared
reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited
AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances
with at least one oxime group in position four.
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Introduction

The enzyme acetylcholinesterase (AChE, EC 3.1.1.7)

plays a very important role in the human body. It

controls cholinergic transmission by decomposition of

the neuromediator acetylcholine. The blockade of its

physiological function by various inhibitors could be

used for treatment of Alzheimer disease (competitive

inhibitors) or misused for military or terrorist activity

(irreversible inhibitors) [1–5]. The well known

irreversible inhibitors are organophosphorus com-

pounds (OPC) [6]; thio- or oxo-derivates of phos-

phonic and phosphoric acid [6]. They are used

extensively in agriculture as pesticides (e.g. parathion,

chlorpyrifos, diazinon), for industrial purposes

(e.g. tributylphosphate), and were also misused as

nerve agents (e.g. sarin, soman, tabun, VX) in local

conflicts and by terrorists (Figure 1) [7–10].

The mechanism of the enzyme’s inhibition by OPC

consists in covalent binding on the serine hydroxyl in

the cavity of AChE [6]. The cavity contains one

catalytic (acylation, A) site at the bottom and one

peripheral site (P) at the lip of the cavity [11–12]. The

A-site contains the catalytic triad (for human AChE,

S203, E334 and H447) which together with W86 is

responsible for binding of the trimethylammonium

group of acetylcholine as acyl transfer to Ser203

is initiated [13]. The P-site involves other residues

including W286 [14]. The ligands bounded to the

P-site can affect the A-site by steric blockade or

allosteric activation. This narrow 20 Å deep gorge was
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studied in detail by ligand binding and crystal-

lographic studies for various species [13–16].

In addition, structural changes occur during OPC-

inhibition [16]. The OPC-AChE conjugate may

undergo further intramolecular modifications called

“aging” that involves dealkylation or deamidation

[17]. The aged AChE is inhibited completely and can

not be reactivated. One of the most resistant

inhibitions is caused by the nerve agent tabun (GA)

[18]. Although the structural basis for resistance of

tabun conjugates is unknown, the crystal structures of

murine AChE showed that non-aged tabun conjugate

induces structural changes in H447 and its hydrogen

bonds [16,19]. Moreover, the conformational change

of the P338 position partially closes the narrow AChE

gorge [16,19]. After an aging reaction, the phosphor-

amidoyl group of GA is replaced by a molecule of

water and the rest of GA molecule is coordinated in

the enzyme’s cavity [16]. Therefore GA belongs to the

worst reactivatable nerve agents.

The reactivation process consists in cleavage of the

covalent bond OPC-AChE by a nucleophilic

group (oximate anion) which restores the activity of

AChE [1]. The reactivators of AChE used are oximes

e.g. pralidoxime, obidoxime, HI-6 (Figure 2) [2,6].

Nevertheless, every type of OPC needs a specific

structure of its AChE reactivator due to the huge

variety of substituents on the central phosphorus atom

in the molecule of the OPC [6]. There is not a broad

spectrum reactivator after more than fifty years of

investigations [17–18] so that, the development and

selection of new effective reactivators as antidotes to

OPC inhibited-AChE is very important.

Several potent substances against GA-inhibited

AChE were investigated recently in our group –

K048 (1) and K075 (2) (Figure 3) [20–22]. In order

to combine these two molecules, new potential

reactivators were designed. The carbamoyl

group replaced one oxime group in the molecule of

K075. The (E)-but-2-ene linker connecting the

pyridinium rings is also in compound K075, which

is slightly shorter than the saturated one, supplying the

butane connecting chain in the molecule of K048. Six

compounds (6–11) were prepared using conventional

synthetic procedures; five of them (7–11) have not

been previously described in the literature (Figure 4).

Firstly, the monoquaternary salts (12–14) were

synthesized using an excess of five equivalent of (E)-

1,4-dibromobut-2-ene in acetone, where bi-products

occur only in minor yields (Scheme 1). The mono-

salts were purified by recrystallization from aceto-

nitrile (MeCN), where the bis-salts were almost

insoluble. Secondly, the bisquaternary substances

were formed in DMF using an excess of

the corresponding carbamoylpyridine (Scheme 1)

[23–26]. Unfortunately, derivatives of 2-carbamoyl-

pyridine could not be prepared although synthesis was

examined both via the hydroxyiminomethylpyridine

and carbamoylpyridine direction. The only previously

known oxime BI-6 (6) was prepared by a novel

approach and, moreover, NMR and MS analysis were

determined, since the foregoing literature data were

not available [26]. The synthesized compounds were

tested in vitro on tabun (GA)-and paraoxon-inhibited

AChE and compared to known oximes (pralidoxime,

obidoxime, HI-6) and promising oximes against GA

(K048, K075) [20–22].

Materials and methods

Chemistry

Preparation of quaternary salts. (A) Preparation of

monoquaternary salts – A solution of the

hydroxyiminomethylpyridine (2.0 g, 16.4 mmol)

and (E)-1,4-dibromobut-2-ene (17.51 g, 81.9 mmol)

in acetone (60 mL) was stirred at reflux. The reaction

mixture was cooled to room temperature

and the crystalline crude product collected by

filtration, washed with acetone (3 £ 20 mL) and

recrystallized from MeCN (12–14). (B) Preparation

of bisquaternary salts – A solution of the

monoquaternary salt (0.50 g, 1.5 mmol) and

carbamoylpyridine (0.38 g, 3.0 mmol) in DMF

(10 mL) was stirred at 80–1008C. The reaction

mixture was cooled to room temperature and

portioned with acetone (50 mL); the crystalline

crude product was collected by filtration, washed

with acetone (3 £ 20 mL) and recrystallized from

MeCN (6–11).

(E)-1-(4-carbamoylpyridinium)-4-(2-hydroxyimino-

methylpyridinium)-but-2-ene dibromide (6). Prepared by

method B via (12). The reaction mixture was stirred at

808C and stopped after 3 h. Yield 0.52 g (76%), TLC

Rf 0.15, m.p. 197–1998C. 1H NMR (300 MHz,

DMSO d6): d (ppm) 9.22 (d, 2H, J ¼ 6.0 Hz, PyrH),

9.13 (d, 1H, J ¼ 6.0 Hz, PyrH), 8.75

(s, 1H, ZCONH2), 8.68 (s, 1H, ZCHvNOH),

8.65-8.56 (m, 1H, PyrH), 8.52-8.38 (m, 3H, PyrH),

Figure 1. Examples of organophosphorus compounds.

Figure 2. Currently used AChE reactivators.
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8.32 (s, 1H, ZCONH2), 8.21-8.12 (m, 1H, PyrH),

6.40-6.26 (m, 1H, ZCHv), 6.05-5.91 (m,

1H, ZCHv), 5.60 (d, 2H, J ¼ 4.7 Hz, ZCH2-),

5.39 (d, 2H, J ¼ 6.3 Hz, ZCH2-). 13C NMR

(75 MHz, DMSO d6): d (ppm) 167.15, 146.22,

145.24, 144.91, 143.57, 143.02, 134.39, 130.98,

130.44, 129.09, 127.16, 62.60. EA: Calculated

41.95% C, 3.96% H, 12.23% N; Found 41.78% C,

4.17% H, 12.15% N. ESI-MS: m/z 149.1 [M]2þ

(calculated for [C8H9N2O]2þ149.17).

(E)-1-(4-carbamoylpyridinium)-4-(3-hydroxyimino-

methylpyridinium)-but-2-ene dibromide (7). Prepared by

method B via (13). The reaction mixture was stirred at

1008C and stopped after 3 h. Yield 0.58 g (85%), TLC

Rf 0.15, m.p. 233–2358C. 1H NMR (300 MHz,

DMSO d6): d (ppm) 9.37.-9.28 (m, 3H, PyrH), 9.11

(d, 1H, J ¼ 6.0 Hz, PyrH), 8.82-8.72 (m, 2H, PyrH

þ ZCONH2), 8.49 (d, 2H, J ¼ 6.0 Hz, PyrH), 8.41

(s, 1H, ZCHvNOH), 8.31 (s, 1H, ZCONH2),

8.25-8.17 (m, 1H, PyrH), 6.31-6.23 (m,

2H, ZCHv), 5.50-5.39 (m, 4H, -CH2-). 13C NMR

(75 MHz, DMSO d6): d (ppm) 163.18, 148.35,

145.89, 144.50, 143.19, 142.57, 141.79, 133.37,

130.13, 130.08, 128.17, 125.87, 61.00, 60.79. EA:

Calculated 41.95% C, 3.96% H, 12.23% N; Found

41.85% C, 4.09% H, 12.19% N. ESI-MS: m/z

149.1 [M]2þ (calculated for [C8H9N2O]2þ149.17).

(E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyimino-

methylpyridinium)-but-2-ene dibromide (8). Prepared

by method B via (14). The reaction mixture was

stirred at 1008C and stopped after 2 h. Yield 0.56 g

(82%), TLC Rf 0.15, m.p. 240–2418C. 1H NMR

(300 MHz, D2O d6): d (ppm) 9.06 (d, 2H,

J ¼ 6.0 Hz, PyrH), 8.84 (d, 2H, J ¼ 6.0 Hz, PyrH),

8.44-8.36 (m, 3H, PyrH þ ZCH ¼ NOH), 8.23 (d,

2H, J ¼ 6.0 Hz, PyrH), 6.43-6.25 (m, 2H, ZCHv),

5.43 (d, 2H, J ¼ 4.8 Hz, ZCH2-), 5.34 (d, 2H,

J ¼ 4.8 Hz, ZCH2-). 13C NMR (75 MHz, DMSO

d6): d (ppm) 149.81, 149.60, 146.77, 146.21, 146.19,

145.18, 131.28, 130.09, 127.17, 125.58, 62.63,

61.90. EA: Calculated 41.95% C, 3.96% H, 12.23%

N; Found 41.38% C, 4.04% H, 12.09%

N. ESI-MS: m/z 149.1 [M]2 þ (calculated for

[C8H9N2O]2þ149.17).

(E)-1-(3-carbamoylpyridinium)-4-(2-hydroxyimino-

methylpyridinium)-but-2-ene dibromide (9). Prepared by

method B via (12). The reaction mixture was stirred at

1008C and stopped after 2 h. Yield 0.56 g (82%), TLC

Rf 0.15, m.p. 240–2418C. 1H NMR (300 MHz,

DMSO d6): d (ppm) 9.52 (s, 1H, PyrH), 9.17 (d,

1H, J ¼ 6.0 Hz, PyrH), 9.12 (d, 1H, J ¼ 6.0 Hz,

PyrH), 9.00 (d, 1H, J ¼ 7.8 Hz, PyrH), 8.70-8.56

(m, 3H, PyrH þ ZCH ¼ NOH þ -CONH2), 8.42

(d, 1H, J ¼ 8.1 Hz, PyrH), 8.33-8.26 (m, 1H, PyrH),

8.24-8.12 (m, 2H, PyrH þ ZCONH2), 6.42-6.28 (m,

1H, ZCHv), 6.10-5.94 (m, 1H, ZCHv), 5.56 (d,

2H, J ¼ 4.8 Hz, ZCH2-), 5.39 (d, 2H,

J ¼ 6.3 Hz, ZCH2-). 13C NMR (75 MHz, DMSO

d6): d (ppm) 162.61, 147.12, 146.19, 146.02, 145.72,

144.96, 143.73, 141.39, 133.57, 131.47, 127.73,

125.66, 61.07, 58.20. EA: Calculated 41.95% C,

3.96% H, 12.23% N; Found 41.70% C, 4.12% H,

12.05% N. ESI-MS: m/z 149.1 [M]2þ (calculated for

[C8H9N2O]2þ149.17).

(E)-1-(3-carbamoylpyridinium)-4-(3-hydroxyimino-

methylpyridinium)-but-2-ene dibromide (10). Prepared

by method B via (13). The reaction mixture was stirred

at 1008C and stopped after 3 h. Yield 0.59 g (87%),

TLC Rf 0.15, m.p. 223–2248C. 1H NMR (300 MHz,

DMSO d6): d (ppm) 9.56 (s, 1H, PyrH), 9.33 (s, 1H,

PyrH), 9.27 (d, 1H, J ¼ 6.0 Hz, PyrH), 9.09 (d, 1H,

J ¼ 6.0 Hz, PyrH), 9.02 (d, 1H, J ¼ 8.1 Hz, PyrH),

8.77 (d, 1H, J ¼ 8.1 Hz, PyrH), 8.66 (s,

1H, ZCONH2), 8.39 (s, 1H, ZCH ¼ NOH),

8.36-8.28 (m, 1H, PyrH), 8.25-8.16 (m, 2H, PyrH),

6.33-6.25 (m, 2H, ZCHv), 5.49-5.38 (m,

4H, ZCH2-). 13C NMR (75 MHz, DMSO d6): d

(ppm) 162.66, 146.47, 144.98, 144.50, 143.76,

143.19, 142.56, 141.80, 133.59, 133.38, 130.21,

130.11, 128.16, 127.90, 61.08. EA: calculated

41.95% C, 3.96% H, 12.23% N; Found 41.70% C,

4.12% H, 12.18% N. ESI-MS: m/z 149.1 [M]2þ

(calculated for [C8H9N2O]2þ149.17).

(E)-1-(3-carbamoylpyridinium)-4-(4-hydroxyimino-

methylpyridinium)-but-2-ene dibromide (11). Prepared

by method B via (14). The reaction mixture was stirred

at 1008C and stopped after 3 h. Yield 0.58 g (85%),

TLC Rf 0.15, m.p. 222-2248C. 1H NMR (300 MHz,

Figure 3. Promising oximes tested on tabun-inhibited AChE.

Figure 4. Six oxime reactivators tested against tabun and

paraoxon-inhibited AChE.
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DMSO d6): d (ppm) 9.56 (s, 1H, PyrH), 9.26 (d, 1H,

J ¼ 6.0 Hz, PyrH), 9.07 (d, 2H, J ¼ 6.0 Hz,

PyrH), 9.02 (d, 1H, J ¼ 8.1 Hz, PyrH), 8.67

(s, 1H, ZCONH2), 8.46 (s, 1H, ZCH ¼ NOH),

8.35-8.24 (m, 3H, PyrH), 8.21 (s, 1H, ZCONH2),

6.30-6.23 (m, 2H, ZCHv), 5.44 (d, 2H, J ¼ 4.8 Hz,

ZCH2-), 5.36 (d, 2H, J ¼ 4.4 Hz, ZCH2-). 13C NMR

(75 MHz, DMSO d6): d (ppm) 162.66, 148.66,

146.47, 145.13, 145.04, 143.74, 133.60, 130.54,

129.70, 127.91, 124.02, 61.08, 60.29. EA: Calculated

41.95% C, 3.96% H, 12.23% N; Found 41.66% C,

4.07% H, 12.12% N. ESI-MS: m/z 149.1 [M]2þ

(calculated for [C8H9N2O]2þ149.17).

1-(4-Bromobut-2-enyl)-2-hydroxyiminomethylpyridi-

nium bromide (12) Consistent with literature data [24]

1-(4-Bromobut-2-enyl)-3-hydroxyiminomethylpyridi-

nium bromide (13) Prepared by method A. The reaction

mixture was stopped after 1.5 h. Yield 4.62 g (84%),

TLC Rf 0.60, m.p. 107–1118C. 1H NMR (300 MHz,

DMSO d6): d (ppm) 9.29 (s, 1H, PyrH), 9.06 (d, 1H,

J ¼ 6.0 Hz, PyrH), 8.75 (d, 1H, J ¼ 8.1 Hz, PyrH),

8.38 (s, 1H, -CH ¼ NOH), 8.24-8.18 (m, 1H,

PyrH), 6.26-6.15 (m, 2H, -CHv), 5.39 (d, 2H,

J ¼ 5.5 Hz, -CH2-N), 4.18 (d, 2H, J ¼

6.2 Hz, -CH2-Br). 13C NMR (75 MHz, DMSO d6):

d (ppm) 144.19, 143.23, 134.07, 133.48, 128.26,

127.48, 60.99, 32.01. EA: Calculated 35.74% C,

3.60% H, 8.34% N; Found 35.36% C, 3.81% H,

8.15% N. ESI-MS: m/z 254.9 [Mþ]þ (calculated for

[C10H12BrN2Oþ]þ255.01).

1-(4-Bromobut-2-enyl)-4-hydroxyiminomethylpyridi-

nium bromide (14) Consistent with literature data [24].

Biochemistry

In vitro testing of synthesized oximes involved a

standard collection of experimental procedures. The

10% rat brain homogenate was used as a source of

AChE. The brain homogenate (0.5 mL) was mixed

with 20mL of an isopropanol solution of GA (O-ethyl-

N,N-dimethylphosphoramidocyanidate, obtained

from the Military facility Brno, 95% purity) or

paraoxon (O,O-diethyl-O-(4-nitrophenyl)phosphate,

analytical standard 99.2% from Sigma-Aldrich) and

distilled water (0.5 mL) to achieve 95% inhibition of

AChE. The mixture was incubated at 258C for 30 min.

2.5 mL of sodium chloride (3 M) solution were added

to the mixture and distilled water added to a volume of

23 mL. Finally, 2 mL of a solution of acetylcholine

iodide (0.02 M) was added. The enzyme activity

Scheme 1. Two step synthesis of monooxime-monocarbamoyl bisquaternary compounds with (E)-but-2-ene linker.

Table I. Reactivation potencies of tested oximes.

Reactivation (%)

Inhibitor Tabun Paraoxon

Reactivator/Concentration 1023 M 1025 M 1023 M 1025 M

K048 (1) 25 ^ 0 0 57 ^ 3 5 ^ 2

K075 (2) 16 ^ 1 23 ^ 1 60 ^ 1 46 ^ 2

pralidoxime (3) 4 ^ 1 0 42 ^ 1 0

HI-6 (4) 2 ^ 1 4 ^ 1 35 ^ 2 0

obidoxime (5) 11 ^ 0 0 76 ^ 2 37 ^ 2

6 0 0 44 ^ 1 39 ^ 3

7 0 0 16 ^ 0 0

8 55 ^ 0 18 ^ 0 64 ^ 2 23 ^ 1

9 0 0 18 ^ 1 33 ^ 3

10 0 0 0 25 ^ 0

11 8 ^ 0 5 ^ 0 53 ^ 0 49 ^ 0

%, mean value of three independent determinations) – time of inhibition – 30 min; time of reactivation by AChE reactivators – 10 min; pH

7.6; temperature 258C.

New reactivators of inhibited AChE 73



(analyzed by potentiometric titration of decomposed

acetylcholine iodide) was measured at pH 7.6 and

258C on an autotitrator RTS 822 (Radiometer,

Denmark). The same procedure was repeated with

enzyme further subjected to 10 min incubation with

an aqueous solution of reactivator (0.2 mL of 1022 M

or 1024 M reactivator solution), which replaced

0.2 mL of water. Activities of intact AChE (a0),

inhibited AChE (ai) and reactivated AChE (ar) were

deduced from the consumption of NaOH solution

(0.01 M) with time. The percentage of reactivation

(%) was calculated from the measured data according

to the formula:

x ¼ 1 2
a0 2 ar

a0 2 ai

� �
�100 ½%�

The whole method is described in detail in the work

of Kuca and Cabal [27]. Pralidoxime, HI-6 and

obidoxime of HPLC purity, previously synthesized in

our laboratory were used as references. Obtained data

are summarized in Table I.

Results and discussion

As was previously stated, it is extraordinary difficult to

reactivate GA-inhibited AChE. Our results with

known reactivators (3–5) confirmed this fact in full

[20–22]. On the other hand, the recently developed

reactivators (1–2) showed promising activity. In

addition, there are two reactivators (8, 11), in the

synthesized compounds, which had some ability

against GA-inhibited AChE, although poor. Com-

pared to the known or recently developed compounds,

the (8) exceeds all of these at both concentrations

used. Moreover, the concentration more suitable for

in vivo experiments is limited to 1024 M [28].

Compound (8) is almost able to match with the best of

the previously published oximes (2) at the concen-

tration one fold lower [22].

Secondly, the reactivators developed for treatment

of intoxication with nerve agents are not suitable for

pesticide poisoning [29–30]. The obtained results for

the known oximes (3–4) showed that their ability to

reactivate paraoxon-inhibited AChE is poor,

especially at 1025 M concentration. The exception is

made by obidoxime (5), which had promising activity;

otherwise, the higher toxicity of obidoxime compared

to HI-6 is well known [31]. Furthermore, the oxime

K075 (2) exceeds all other published reactivators in

the reactivation of paraoxon-inhibited AChE at 1025

M concentration. The novel compounds also showed

promising activity. Three of them (6, 8, 11) exceeded

pralidoxime and HI-6 at a concentration 1023

M. Moreover, two oximes (6, 11) reached or exceeded

the activity of obidoxime at a concentration applicable

in vivo. Finally, the oxime 11 surpassed all tested

compounds in reactivation of paraoxon-inhibited

AChE.

Consequently, the structure-activity relationship

appropriate for reactivation of tabun- and paraoxon-

inhibited AChE should be considered [32]. Generally,

five structural factors influence the reactivation ability

of an agent – the presence, position and number of

oxime groups, presence of quaternary nitrogen and

structure of connecting linker in bispyridinium

compounds [32].

The presence of oxime is essential for all reactivators

[2]. The position of oxime determines which type

of OPC will be better accessible for reactivation

[18–19,33–34]. In the event of GA, the

hydroxyiminomethyl (oxime) in position-four is

preferred (1–2, 5, 8, 11) [20–22]. For paraoxon-

inhibited AChE, position-four of the oxime

group (2, 11) also gave better reactivation ability

although the differences are not so remarkable (5 in

contrast to 6) [25]. Our results showed that the

number of oximes present in the reactivator molecule

is not a limiting factor for higher reactivation efficacy.

The second oxime group can be replaced by a

carbamoyl group without decrease in reactivating

activity both for GA and paraoxon (2 in contrast to 1; 2

in contrast to 8; 2 in contrast to 11). The quaternary

compounds, monoquaternary and even better bisqua-

ternary, have usually increased affinity to AChE than

the non-quaternary reactivators as was previously

described [31,35]. The length and constitution of the

connecting linker also plays an important role in the

reactivation process [36–37]. The optimal length of

the connecting bridge lies between three (5) and

four (1) carbon atoms (or equivalents) where the

but-2-ene connecting linker (2, 6–11) is satisfactory

due to the double bond [38]. Moreover, the double

bond enhances the rigidity of the linker by

dislocation of free rotation of one bond in this linker.

Additionally, the application of the but-2-ene con-

necting linker gives better results, compared

to the relevant butane linker (1 in contrast to 2),

at 1025 M concentration, which is more appropriate

for human use.

In conclusion, a series of six reactivators have

been prepared in satisfactory yield and purity.

Their ability to reactivate GA-and paraoxon-inhib-

ited AChE was measured in vitro. One compound

exceeded all the reference compounds against tabun-

inhibited AChE. Two compounds were found to be

promising against paraoxon-inhibited AChE at

concentrations accessible after administration

in vivo. Pralidoxime and HI-6 were found to be

unsuitable for use against pesticide inhibition of

AChE. The reactivation potency of these com-

pounds depends on structural factors such as the

position of the functional oxime group on the

pyridinium ring, presence of quaternary nitrogen

and the constitution of the linking chain.
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